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ABSTRACT

A system of time dependent integral equations are derived
and then are analytically demonstrated to be capable of
treating scattering by a dielectric interface. A finite
difference method is demonstrated to be capable of determining
the fields scattered by an obstacle having an edge, by com-
paring a numerical solution to a canonical solution for
scattering by a perfectly conducting wedge. Both methods are
applied to the dielectric platform model which has both a
dielectric interface as well as an edge. The results obtained
are in close agreement and we choose to generate production
data for ATLAS I related parameters by employing the finite
difference method; however, this should not be taken as an
endorsement that this method is always preferable. As part
of the investigation we identify problems for which either
method would be preferred. Finally, we present time dependent
plots of the electric field at points in the working volume
that show the amount of distortion caused by the platform.
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SECTION I

INTRODUCTION AND SUMMARY
35
The primary issue that pervaded this investigation was

the question of how to achieve confidence in the numerical
data that would be generated. The approach used was to
compare the results obtained by two dissimilar calculational
procedures after each was demonstrated to be capable of
yielding results known to be valid for separate canonical

problems. The two approaches are a coupled system of time
# dependent integral equations and an appropriate finite
1 difference method.

The concern about the validity of the results is due to the
fact that the plate model of the ATLAS I trestle platform requires
the proper numerical treatment of a dielectric interface as
well as an edge. The vast majority of numerical time
dependent scattering calculations deal with scattering by a
perfectly conducting obstacle and few of those studies focus
on the effect of singularities caused in the solution due to
an edge. We are not aware of any previous solution in the
literature of the coupled system of integral equations that
we derive, and numerically solve. The finite difference
method that we employ has been previously used by Page and
Peterson (ref. 1) for a dielectric interface; however, the
procedure they employ at the interface is different from our
procedure. This difference in the procedures does not appear
to have serious consegquence since numerical testing indicated
that both procedures yield similar results for sufficiently
small grid step size.

oy g e A S 08 PO T T TTIAR IN W

l. Page, W. E. and D. H. Peterson, A Numerical Method for
Computing the Propagation of an Electromagnetic Pulse
Guided Over a Material Interface, Sensor and Simulation
Note 96, Air Force Weapons Laboratory, 1970.




The canonical problems used to test the system of
integral equations are the problem of scattering by a
dielectric half space and the problem of scattering by an
infinite dielectric slab. For these problems, we analytically
solve our system of integral equations and obtain the known
solutions.

Our testing of the finite difference method was considerably
more involved and a consequence of this testing has the
potential for yielding significant side benefits. We utilize
the known canonical solution for scattering of a plane wave
step function by a perfectly conducting wedge. This solution
was convolved with the function of time that we intended to
choose for an incident plane wave pulse that would be conven-
ient for us to treat by the finite difference method. The
result of this convolution describes the scattering of a plane
wave, having the desirable time dependence, by the perfectly
conducting wedge. It is a simple matter to test that the
results obtained by the convolution procedure are accurate
to any prespecified number of significant figures. The test
consists of increasing the number of points in the convolution
integration procedure. We compared the results obtained by
the finite difference method with the results of known accuracy
obtained by the convolution approach and determined that the
finite difference approach could also yield solutions to any
prespecified number of significant figures by decreasing the
finite difference grid step size.

The side benefit of this testing of the finite difference
method was that we were able to show that the convolution
solution and the finite difference solution were still in
agreement when we let the wedge angle approach zero. This
demonstrated that a particular finite difference method was
capable of determining the field scattered by a particular
perfectly conducting open surface (the semi-infinite half
plane). This identifies an area of investigation that has
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the potential to satisfy a long standing need in the area of
EMP interaction and coupling. The question of whether an
appropriate finite difference method is capable of determining
the fields scattered by a nonplanar open surface merits a
thorough investigation. This capability is necessary to
qaantify errors introduced by the many approximations
currently employed to calculate the currents and voltages at
the inputs of subsystems contained within metallic

enclosures (missiles, aircraft, tanks, ships, etc.).

Returning to the question of confidence in the numerical
data we present for the model of the ATLAS I trestle platform, we
have explained how we concluded that the integral equation approach
was capable of treating the dielectric interface problem and
our finitc difference method was capable of treating the
edge problem. Our final test was to apply both methods to
the dielectric plate, of finite extent and thickness, which
has both an edge and a dielectric interface. The results
obtained by the two methods were in agreement and we chose to
use the finite difference method to generate the production
runs that had parameters chosen to study the effect of
TRESTLE's platform. For this particular problem, the finite
difference method was chosen due to computer memory consider-
ations; however, this should not be taken as an endorsement
that this method is always preferable to use. As part
our investigation we have identified problems for which
either method would be preferred.

The results of our production runs show that, according
to our simplified model of the platform, the fields in
TRESTLE'S working volume are clearly distorted by the platform.
This distortion occurs to the pulse shape as well as to its
amplitude. As the observation point is chosen further in
from the leading edge of the platform, the distortion persists
for larger distances above the platform. Our present study
is limited to a distance from the leading edge that corresponds
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to 25 platform thicknesses. The observation distance is
fundamentally limited by our two-dimensional modeling of

a three-dimensional platform. The deeper in and higher up
we choose to observe, the sooner we sense the effects of
the sides of the platform that are not included in the two- :
dimensional model. Even with this limitation, our data is 1
applicable for times longer than the time the incident field
requires to achieve its maximum amplitude.

We view the amount of distortion exhibited by our model
and calculations as demonstrating a need for further investi-
gations, both theoretical and experimental, in order to assess
and assist the threat relatability of tests that will be per-
formed in ATLAS I. These investigations should include a more
detailed model of the entire support structure as well as
interactions with test objects and other portions of the
simulator. :




SECTION II
FORMULATION OF THE INTEGRAL EQUATION METHOD

tion of interest is depicted in figures la and 1lb. The
incident electromagnetic field is given by

(z - zo) cos B + (y - yo) sin B

§ figures la and 1b, Z  is the free-space characteristic
i impedance, c, is the speed of light in free space and x

i zo

(x° = 0).

of x. Under these circumstances one can show that the
the scattered magnetic field will lie entirely in the yz

plus scattered, are then reduced to

In this sécéion we derive the system of integral equations
for the problem of scattering from a dielectric cylinder of
infinite length and arbitrary cross section. The configura-

inc _ A A
E Eo £(t 4 /co)ex
inc _ ,inc -2 inc ~
H = ﬂy 5 ey + Hz ez
; E cos B8 . E_sin B
inc fe) inc o
HY = ———Ez——— f(t - z'/co), Hz = - -——i;——— f(t - z'/c)

(1)

where ax, éy, sz are unit vectors, B is the angle defined in

o’ YO'
are the coordinates of a point P, on the surface of the

cylinders, that is swept by the incident wavefront at t = 0

The dielectric cylinder is homogeneocus with a dielectric
permittivity € and a magnetic permeability My equal to the
vacuum permeability Moo Our problem is clearly two-dimensional,
i.e., all the physical quantities of interest are independent

scattered electric field will only have an x-component whereas

plane. Maxwell's equations for the total field, incident




_E_inc

(a)

(b)

Figures 1. Three- and Two-Dimensional Geometries for the Scattering
of an Electromagnetic Pulse from an Infinite
Dielectric Cylinder
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! 3E oH 3H
caE = By -~ T - Jo¥ezet) (3)

where € is equal to €0 outside the body and equal to € inside
the body and Jo(y,z,t) is the source of the incident field
located far away from the scattering volume. (When ¢ = €4

the source term in Equation 3 should be set equal to zero.)
The boundary conditions across the surface of the cylinder
are: E_  and H ° s continuous, i.e., total tangential electric
and magnetic fields should be continuous (fig. 2). 1If the
incident wavefront has a sharp front, i.e., the fields are
nonzero there, then at t = 0 there is a discontinuity of the
fields across the boundary. We will assume that f(u) is a
smooth function of u and define it more precisely as we treat
our equations numerically in subsequent sections. For the
derivation of the system of integral equations we need, as we
shall see, continuity of Ex and 3Ex/3n where n is the outward
normal on the surface of the cylinder. Continuity of BEx/an
is inferred by noting that (fig. 2)

3E, E_ 3E,

A x A
Jn = VyBx =3y Otz N

9E . 9E
= 15% (-sir 0) + 1E?-(cos 8)

E®, ¥E,
= 3y ('Sz) - (Sy)

o é% (B, 8, +Hy ;y) 3 g% I

(4)
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where the penultimate step employed equations 2. Since H - 8
is continuous across the boundary for all times we understand
that so are a/af(g « 8) and aEx/an. (We exclude pathological
functions.) ‘ =,

Next we proceed to derive the system of integral equations
that solves our two-dimensional scattering problem, i.e., it
allows the calculation of the scattered fields inside and
outside the dielectric body. We begin with the wave equation
satisfied by E, that can be derived by manipulating eguations
2 and 3: : e = :

5 22 Y(p',t') = F(p',t") (5)
y'z' :2‘;2‘ 8 R

where p' = y'e + z'e

totai electric field
-1/2

-1/2

¥

1]
&)
)
‘-r
"

c=c¢c_ = (p.c)) outside the cylinder and

c»= c; = (u_c.) inside the cylinder,
F(g';t')

F(p',t') = 0 inside the cylinder.

uoiado/at) outside the cylinder and

Next, we introduce the two-dimensional Green's function G
satisfying ;
2 T
(vy'z' moN ———i)G(g',g: t',t) = §(p' - p) §(t' - ¢)

c” at! (6)

G(p',p; t',t) is defined in an infinite free-space or an
infinite dielectric medium depending on whether ¢ = ¢, Or .
¢ =cy. The solution to equation 6 is : ]
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& U[tc(t' -t) - |p*' - gl]
B [c2eer - 02 - ¢ - g)z]ln
o (7)

G(p'ops t',t) = =

where U(x) = 1 for x > 0 and U(x) = 0 for x < 0. The plus

sign in equation 7 corresponds to the retarded solution, i.e.,
an observer at p' senses at t' a disturbance caused by a

source at p fired at the retarded time t = t' - [p' - p|/c.

The minus sign in equation 7 corresponds to the advanced solu-
tion, i.e., an observer at p' senses at t' a disturbance caused
by a source at p fired at the advanced time t = t' + [p' - p|/c.
This solution violates causality. Notice, however, that if

we switch the observation and source space-time points the
advanced solution of equation 7 becomes the retarded solution
for the problem of a disturbance observed at (p,t) and caused

by a source at p' fired at t' = t - [p' - p|/c. This observation
will be utilized later on when we derive our integral relationshps.

f¢ [‘l’(p_'.t') 3orG,(0' vpi ', t)
—Qc

=G (p'sps t',t) 'rgr ‘l’(g'.t')] ds'at’

¢ 217 f ser[Goterer i) Fhr ¥ip' t")
S

) inc

~¥(p' t") 3o G lp'sps t'.t)]anae’ = ¥i™ (g, 0 - ¥(p,0)

(8)
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where C is the contour shown in figure 2, n' is the outward
normal (fig. 2), S, is the region bounded by the circle at
infinity and C and»?inc is the incident electric field.

The derivation of equation 8 assumes that the contour
integral at infinity (resulting from Green's identity) has
been set equal to zero. The reason is that Y and 3¥/3n’
in the integrals can be replaced by the scattered fields
(one can see this by applying equation 8 for ¥ = vinc) and,
for any finite t' or -«=, they are zero. Thus the integration
in t' is over one instant only (t' = +») and it can be shown
to have zero contribution. The t'-integration in the second
integral in equation 8 can be performed explicitly. At t' = -=
the scattered fields are zero throughout region S, and at
t' = » have gone to zero smoothly to assure that the integral
over S is zero. Thus equation 8 can be rewritten as

"(grt) = ‘{’inc(grt) - f¢[‘l’(2'rt') 's%r GO('E"B'; t', )

- Gy (07 t' k) %\r(g',t')] ds'dt’. 9)

As we can see from equation 9 the scattered field at p and
t is due to contributions from points p' on the contour
firing at t'. Thus t' must be less than t and if we recall
equation 7 we understand that G(p',p; t',t) must be taken
with the minus sign in front of c(t' - t), i.e., it is the
advanced solution of equation 6 with ¢ = Co*

For the region inside the contour C we can apply a similar
procedure and arrive at the following equation

17




‘l’(g.t) - ¢‘y(ﬂ'lt) 'é%rGi(P-"g; t',t)

;""\a

- Gi(g',g: t',8) ziv wg'.t')] ds'at’ (10)

where C is the same contour as in equation 9, n' is the out-

ward normal and the Green's function Gi is the advanced solution
of equation 6 with ¢ = cy-

In order to obtain our system of integral equations
we let the observation point p approach the contour C. If
the contour C is smootl then the singularity due to 3G/3n'
at p' = p results in a term +(1/2)Y¥(p,t) (plus for the inside
and minus for the outside) and equations 9 and 10 give

@
; 3G Y
1 inc o o
3 MalBiCl ® T 'ff(“/o " % aT') gt
- C

1 3Gi a‘l’i G
- C

where we have used the subscripts "o" and "i" to denote the
outside and inside of the cylinder respectively. One can
show that a principal value integration over C (resulting
from the limiting process p + p' from the outside) is not
necessary because the kernel in the integral is not singular
as p' + p when both p and p' lie on the contour. (A contour
with sharp corners is discussed at the end of this section.)

If we recall the continuity of ¥ and 3¥/3n as we cross
the boundary contour we understand that Y, = ¥, = ¥(p,t) and

18
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avo/an = awi/an = 3¥/9n where p is on the contour C. Thus
equations 11 represent a system of integral equations which
allow the detergination of ¥ and 3¥/9n on the boundary contour
C. Once these quantities are known one can employ equations

9 and 10 to determine Y outside the body and inside the body
respectively. Then Maxwell's equations 2 allow the determina-
tion of H everywhere.

In order to cast our system of equations into a form
amenable to numerical treatment we employ the explicit form of
G given by equation 7 and manipulate the resulting integrals
, to eliminate the apparent singular behavior that results from
the differentiation of G. We have,

3G b i 3G . 2 o 3G p' - o
a_n,.av(.; n s.erP-,R n = R n (12)
where R = [p' - p|
_gg=_§c_:_ sle(t - t') - R
R T 11/2
[cz(t - t')2 - R?’_
1
R s :
+l2 - 372 Ulc(t = t') = R]
[c E =60 R ] (13)

If we combine equations 12 and 13 we can write

¥(p',t') (g' - 9)
172 R
y2 2]

3G £t
b4 30’ dt' = + T [
t'=t-R/C

c(t-t' - R

¥(p',t')(p' - p) * n'
f 2 2 & Ulc(t = t') - R] A4t!' |
(14)

|
|
|
R ———— I e ig
|




Recalling that

J’ rat! - t -t
372 172
te®(e - £92 - r?) R%[c2(t - £')2 - R?

we can rewrite the integral on the right-hand side of
equation 14 as

F ¥(p',t")(p' - p) - A"
b f% E s —y77 Ule(t - t') - R] at'

o [c2(t - £)2 - R

- - ,%f Y(p'.t') (p' - p) ¢ A' Ule(t - t') - Rl gor

£t =g '
dt
i/2
[Rzlcz(t - 92 - 8% J

4
©®

(- t') ¥(p'st') Ulc(t - £') =Rl (p' - p) * A’
177

c
et |
Rzlcz(t - t')2 - Rzl

7 (&=t (p' - p) - A -

C

*ﬁf g " 21/2{"‘”'"‘"'”3?
=® R7[c“(t - t'")° - R}

c¥§[=(t - t') =~ R]} dt’'

F ot =gip'=p « &

c L (24 '

TRy L 5 g aPE VIStE R M g
-® R™[c"(t = £')° = R7]

- 5= -

1 '(ﬂ' - tl)(gi -~ p) n'
Rlc?(t - t')

2 ]
- R] t' =t - R/c (15)
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If we compare equation 14 to equation 15 we see that

r : f (' - t)(p' -p) *n'
9G S - = = oy '
f‘l’ 3T dt'’= 21rf .2 1/2 3t! dt
wR[c(t-t) R%]

(16)

If we now return to our system of equations 11, we can use
equation 16 to rewrite them as

1 i c. r (R-n)(t'-t) Sw
5 ¥(p,t) = ¥ nc(g,t) ﬁ f¢[ PY

aw] U[c (t - t') - R]
[c

- ds' d4t'
on' g R2]1/2

olt = t")

1 ¢y LLB A -8 50 4y
2‘ '{’(E,t) L ﬁfﬁ[ ? Y °F N’

c

U[ci(t - gty = R] : 3

[ci(t - t')

-1/2 -1/2

whereR-_g'-g,Rslg El,c-(ue) r ey o= (U gy)
and n' is the outward normal on C (fig. 2). The integrands
in the above system of integral equations appear singular when
R =0 and/or c(t - t') = R. The R = 0 singularity is only
apparent because it can be shown that R * n' behaves as R®
where a >2 when R + 0. The c(t - t') = R singularity '




is integrable because of the two-dimensional integration.
When R = 0 and c(t - t') = R simultaneously, i.e., R = 0,
t = t', the factor t - t' provides an extra zero and the
R = 0 singularity is still only apparent.

So far we have restricted our discussion to smooth
contours. In this report we are interested in the numerical
solution for the problem of scattering of an electromagnetic
pulse from an infinite dielectric cylinder of a rectangular
cross section. Thus the behavior of equations 17 in the
vicinity of sharp corners (edges) must be examined. When the
observation point p does not lie at a corner, equations 17 are
still true. This is so because it is well-known that ¥ is finite
at the edge and 3¥/3n varies no faster than s-l/z, where s is the
distance from the edge; consequently the integrals involving
9¥/9n have an integrable singularity and are well behaved. When
the observation point p is allowed to approach a corner,>the o
factor that is extracted from the integral involving 3G/9n
is equal to *(Q/2m)Y rather than +1/2 (Q is the interior angle
shown in fig. 3) and consequently when p is at a corner
equations 11 and 17 have their left-hand sides equal to
(1 - Q/Zn)?o'i. Our numerical treatment for the pair of
integral equations 17 will not allow p to lie at a corner
because all the reference points are chosen at the midpoints
of arc segments as we will explain in the next section. Thus
the factor to be extracted is *1/2 and equations 17 are valid
for all observation points of interest.

Before we turn our attention to the next section we
should mention that in appendices A and B the validity of
equations 17 is tested analytically by solving two special
problems whose solutions are known.




Figure 3. Geometry for the Definition of the Interior Angle
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SECTION III
NUMERICAL TREATMENT OF INTEGRAL EQUATIONS

In this»secéion we present the procedure that allows us to
numerically solve equations 17 for the problem of scattering of
an electromagnetic wave from an infinite dielectric cylinder of
a rectangular cross section (fig. 4) i.e., a rectangular slab. i
The incident wave is E-~polarized in the x direction and propagates ‘
in the z direction. (Even though we focus our attention on the
numerical solution for a particular cross section the method
we employ is directly applicable to other cross sectional
geometries.) 1In order to cast equations 17 into a system of
algebraic equations which we can solve numerically, we |
partition each of the four sides of the rectangle in figure 4
into equal-sized intervals As and the midpoint of each line
segment is chosen as the reference point for that interval.
(As may vary from side to side.) 1In order to effect a similar
partition for the t-integration we observe that the upper
limit in equations 17 can be replaced by t since there can
be no contribution to ¥(p,t) later than t. Assuming that
the wavefront hits the front size of the rectangle at t = 0
we can replace the lower limit of the t~-integrations by zero.
If we set t = 0 in equations 17 we obtain (1/2)?0(2,0) = Winc(g,o) s
and ¥,;(p,0) = 0. There is no contradiction because the incident | 3
wave has a smooth wavefront and Vinc(g,o) = 0 at all p on the
contour. If the latest time of interest t is called T then )
we have a time interval (o,T) that can be partitioned into ;
equal-sized intervals At. ﬂ
th

The reference point for the j time interval, bounded
by tj-l = (j - 1)At and tj = jAt, is tj and not the midpoint %
(3 - 1/2)At. The Cartesian product of the space and time
partitions produces a lattice of zones. The reference point
for the i,j zone is then (i - 1/2)As, jAt, if for convenience
all line segments are of equal size. Before we transform
the pair of integral equations 17 into a system of
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Figure 4. Geometry Depicting the Electromagnetic Pulse Incident
on an Infinite Dielectric Cylinder of Rectangular
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algebraic equations which can be solved numerically we
rewrite equations 17 in a more convenient form

; 3

¥(y.z,t) = s(y,z,t) -[¢ [Kl(y.z.t; y'.z2',t")e(y',2z',t')
o “C

+ KZ(Y'zIt; Y',z'.t')‘l’(y'.z'.t')] ds'dt’

t
¥(y,z,t) = /¢ (Ry(y,z,t; v',2',t") e(y',2',t")
o °C
+ Ky (y,z,t; y',z',t')@(y',z',t')] ds'dt' (18)
where ¢ = 3¥/3n, ¥ = 3¥/at, §= 2¢iNC
Ki ; c:r_o Ulc,(t - t*) - R;]_ﬁ
[cg(t - £1)% < Rz] :
gt ﬁ'); -t y[cylt - £ - RI:I|.75
R [cg(t -2 Rz]
K3 = Ky (cy * ¢4) Ky = Kyleg *> ) (19)

Our method of solving the system of equations 18 is to
assume that ¥ and ¢ vary so slowly in space and time that
their values at a point defined by the midpoints of the arc
segment and time interval forming a zone provide a good
estimate for their values over the corresponding zone. The
singular nature of the kernels forbids us from making the
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same assumption about them. If we divide the circumference

of the contour C into N segments we can rewrite equations 18
at t = tj as
25

B9
= Z E o,’;‘l/z f K, ds'dt' + wl’i 172 f K, ds'dt’

k=1 2=1|
A, L)

EZ "'1/2/‘ K, ds'at' +wl’: 1/2/ K, ds'at’

k=1 2=1
L) Ao 9

of the th arc segment, Akz is the (k,%) zone in the s,t space

where F: (gm, nAt), [ is the radius vector to the midpoint
m
and K, = K, (p;.tyi p'st') (p = 1,2,3,4).

The time derivative is defined as

2=1/2 _ & _ i1
= o ol

1
Thus wi/Z = (¥ - ¥ /At = ‘!’,lg/At since ¥0 = o.

At j = 1 equations 20 give

¥i = s} - E 01/2 f K, ds'dt’ + (\Fll(/At) f K, ds'dt’
k=1 Ay Apy
N
=2 8 [ Ry ds'dt' + (¥,/At) f K, ds'dt'.  (21)
k=1 Ay A1
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This is a system of 2N equations with 2N unknowns and can be
solved to give Vi, Qi/z (i=1,2,...,N) in terms of the known
quantities si. /If we write the system of equations 20 at

j = 2, we again obtain a system of 2N equations for 2N unknowns
?i, Oi/z in terms of the known gquantities si, ?i, 01/2 (i=1,2,
«essN). Thus we can march in time and solve for ?i and ¢2-1/2
for any 1 and j in terms of the known quantities Si, Vi
0¢71/2 (i=1,2,...,8; ¢ = 1,2,...,3-1). Once we obtain ¥]
and oi-l/z we can return to integral relationships 9 and 10

and calculate Y off the surface of the cylinder.

Notice that so far no restriction has been placed on
the relative magnitude between At and R = |[p' - p|. Integrals
fhkz Kp ds'dt' in equation 20 represent the interaction between
the various spatial segments and their importance depends on
the relative magnitude of At and R (the distance between points)
as we will explain shortly. To make this clear consider
equations 21 written for j = 1. In this equation ?i, i.e.,
Y evaluated at the midpoint of the ith line segment and at
t = At, depends on ¢ and Y at the midpoints of all other
line segments at t = At. A 2N x 2N matrix has to be inverted
in order to evaluate Wi. However, it is possible to choose
At such that Wi'and in general Wi only dépends on ¥ and ¢
evaluated at the various midpoints at earlier times without
inverting a 2N x 2N matrix, i.e., each pair of equations 20
will be solved for Vi and 01’1/2 in terms of Si, ?i 01-1/2
(¢=1,2,...,3=1) by inverting a 2 x 2 matrix. The restriction
to be imposed on At is At < As/2 where As the size of line
segments into which the sides of the rectangle have been
partitioned. (We assume that all line segments are of equal
size; if not, As is the smallest line segment.) The above
restriction will now be illustrated. We proceed by writing
equation 21 for i = 2, where the line segment i = 2 is

depicted in figure S.
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Figure 5. Partition of the Perimeter of the Rectangular Cross
Section into N Equal-Sized Segments




e ey e

T

N
\vg % s%-z [011‘/2/ K, ds'dt' + (‘l’llc/At)/ K, ds'dt']

k=1 Ay Ary

N
q; - Z[’:lc/z_/ K, ds'dt' + (‘!)]E/At)/ K, d'dt']

k=1 Ay A1 (22)

Let us consider in particular the interaction between line
segments 1 and 2. This interaction is represented by the
influence coefficient fAll Kp(gz,At; p',t') ds'dt' (p=1,2,3,4).
(Actually K2 = K4 = 0 if both the reference and integration
points lie on the same side of the rectangle since R ° n=0.)
If we recall equations 19 we observe that Kp contains the

step function U and the integration is to be performed over
that portion of A,, that make U = 1, i.e., c(t - t') - R 20
or c(t ~ t') - |z - 2'| > 0. This last inequality defines a
region of influence or a light "cone" in the ct',z' coordinate
system (fig. 6). The exact location of this light "cone"
depends on the values of z and t and in the present case

z = As/2 and t = At. 1In figure 7 we have plotted zone All
(defined by 2z' = 0, As and t = 0, At) for coAt = As/2, As,
348/2 in a cot’,z' space. The case ¢ = ¢4 will be examined
shortly. Notice that for coAt > As/2 the influence coefficient
fAll.K1 dz'dt' is nonzero, since the light "cone" intersects
part of All' i.e., the line segment 1 influences line segment
2 during the time interval At and consequently ?é in the
first of equations 22 depends on 01/2, i.e., on ¢ evaluated
at a different point but at the same time (j = 1). However,
if c At < As/2 then 1511 K, dz'dt' = 0 and also /, _ K, dz'dt’
= 0 since ciAt < coAt and V% in equations 22 does not depend

on Oilz (oxr Yi since Rz = K‘ = 0).




By e ct' =ct - (2' - 2)
ct' mct+2' -2
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Figure 6. The Shaded Area Represents the Light "Cone" or Region of
Influence for the Interaction Between Points Lying on the
Same Side of the Rectangular Cross Section
(Here the y=0 Side)

31




‘(s ° odpiW pue | juoubag
dodusy ayy uo ‘(g *Bjy) 2 juswbas aupy Jo u} ek
aup uou“o””ww..mw.u_m w“a ..oup.m“__o_o_tocu 3duan|ju] Jo adudpuadaq ay3 bujmoys vn.a..ao:_ L 34nbi4

s 2
2 _w; .~+/ﬂ! L\\ : =< *w«mbqoo |
7 L sy =3V 2
Vv i mm.m 1,
/ \\\ Hy T:oo

Y k) .ﬂu 3




Next consider the influence coefficient between line
segments 1 and N, i.e., line segments not lying on the same
side of the rectangle (fig. 5) and write equation 21 for
i = N. Again wé examine the influence coefficients Ia Kp
dz'dt'. If we set U=1, i.e., c(t - t') =R > 0 or
c(t - t') - (2'2 + yz)l/2 > 0 we find that the region of
influence or light "cone" is a branch of a hyperbola shown
in figure 8. 1In figure 9 we have plotted zone All (defined
by z =0, 4s and t = 0, At) for coAt = Ag/2, As, 348/2 in
the cot', z' space. (Notice that y = - As/2.) These plots
exhibit similar features as those in figure 7, i.e., the
integral over All is zero if coAt < As/2. 1In general, the
presance of U dictates that the influence coefficent will
be zero if t < t' + R/c. When t = At this inequality is
satisfied for all t' (0 < t' < At) if At < R/c. The smallest
R is As/2, since the reference point is located at the middle
of a line segment, i.e., cAt < As/2. When t = nAt and (n - 1)
At < t' < nAt we again obtain the same criterion. Bearing
the previous discussion in mind, we can rewrite equations 21

as
R 1/2
Yy= 8- (B, %
1 1/2

where (Kp)kz = 'rAqu ds'dt'. Notice that all influence
coefficients are zero except the self-terms (Kl)11 and (Ka)il.

(The other two self-terms (Kz)il and (K4)i1 are zero because
of condition R * n'= 0.) It is shown at the end of this
section that the self-terms have a very simple form, i.e.,
(xl)ij = coAt, (K3)ij = ciAt independently of location and
time. Notice that the two indices correspond to those in
the left-hand sides of equations 20. Thus equations 2la can
be solved to give
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At the next time step, i.e., t = 2T equations 20 can be
rewritten as

N

- e 1/2 172
9" 8 - K)yg % Z[‘Kl’kl T (Kl ¥y ]
k=1
N
g 3/2 iy 21/2
e gy 020 D [mag 7 g B ]
k=1

s vl/2 _ 1l
where (Kl)12 coAt, (K3)12 = ciAt. From W

all Yi/zare known since Wg = 0 and Wi are known from t = T.
Also all ¢ 1/2 are known from the t = 1t step and the above
system of equations can be solved for Wi ¢2/2. In general
by marching on in time we can evaluate Wj,oj 1/2 in terms
of s,¢%,0/°1/2 (x = 1,2,...,8 and ¢ = 1, 2,...,3-1) by

inverting a 2 x 2 matrix.

The success of the above procedure depends among other
factors on how well we can calculate the influence coeffic-
ients fAll Kp ds'dt' (p = 1,2,3,4). Fortunately, these
integrals can be performed explicitly in terms of simple
functions. From equations 19 we see that we have two types
of integrals,
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Figure 10. Geometry Illustrating the Influence of Line Segments of a Side (here
the y=0 Side) on a Point on the Same Side. The Influence
Coefficients are Zero if the Corresponding Zone
Lies Entirely Outside the Light “Cone"
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on a Point on Side y=-d. The Influence Coefficients are
Zero if the Corresponding Zone Lies Entirely
Outside the Light "Cone"




= S . Ulelt = £') = R] 2
Il "_f > 2 - 177 ds'dt
A [c’-(t = Er)" = R ]

(R n')Nt - t') Pr AR
IZ = %-f — vE Ulc(t t’) R{75 ds'dt’
A

2 2 ol
[c(t-t) R (23)

where c is Co Or ¢4 and A is a zone in the s,t space. As
we mentioned ealrier, the presence of the step function U

may alter the region of integration since U =1 for c(t - t')
-R>0and U =0 for c(t - t') - R < 0. For example, on

the same side of the rectangle, say y = 0 we have R = |z - z'|
and inequality c(t - t') - |z = 2'| > 0 represents the light
"cone" in the z',t' coordinate system (fig. 6). Thus if a
zone intersects the light cone as shown in figure 10 the area
over which integrations 22 are to be performed is the shaded
part of A. As we indicated earlier, the light "cone" does not
necessarily consist of straight lines. 1If, for example, the
reference point lies on the y = 0 side and the-integration
points on the y = ~d or z = 0 sides, then R=[(z - z')2 + dzll/2
or R=[z'2 + yz]]'/2 respectively and inequality t - t' > R
represents a region bounded by one branch of a hyperbola in
the z',ct’' or y',ct' coordinate systems respectively. These
are the light "cones" for these cases. Again if the zone
intersects the light "cone" (fig. 11, 12) only the shaded

part of zone A will contribute to the integration. No matter
what the relative position of the spatial reference and inte-
gration points is, inequality c(t - t') > R represents a

light "cone” or a region of influence and in the appropriate
s',t' coordinate system there are, in our case, fifteen
possible diagrams for the relative positions of the light
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"cone" and a zone. In figure 13 only ten diagrams are
presented since intersections of the light "cone" with zones

occur symmetrica;ly and only the right-hand off center ones
are displayed. ’'Also the light "cone" depicted can be hyper-
bolic or straight or both depending on the diagram. Notice
that for each diagram the integration area is either a
rectangle or a triangular region or a combination of the two.
Thus we need only exhibit the results of integration for
diagrams VII and XI (fig. 14). First we recall that when
the reference and integration points lie on the same side

of the rectangle the inner product R ° ﬁ'is zero and Il
defined in equation 22 is zero. Next, for convenience but
without sacrificing generality we choose our integration

points on the y = 0 side and the reference point on the

2 y )1/2

(If another combination is chosen, for example reference

point on z = b side, then R = (z2' - b)ez +y ey,

R= [(2' - b) 2]1/2. A slmple change of variables, b = z'

= z", can then reduce this case to the previous one by appropri-
ately changing the limits of the z' integration. Similar
agruments hold true for all other combinations.) Referring

to figure 14 the following results can be obtained.

z = 0 side, i.e., R = 2' az +y éy, R = (2'

I, (VII) = — f Blele = t) = Bl as'ae’
i "ol - enz nz]l/i

t* z(t')

-5 f f [cz(t = d:'dt'.z yz]lﬂ'

to-1 x-1 Bl e

where z(t') is obtained by setting c(t - t') - R =0, i.e.,
2t = [Pk - e - y? |2, e e e - /e ag ) ¢+ ¥HV2
and
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- PR s 5 3
-1 ‘k (t tz-l) Zp 1 y

1
I, (ViI) = - |t - t,-j)tan

’ zk-l
sz + y2
c(t - tz-l) - Yc(t - tz-1) -22 -y
Yyt -¢, )¢ =-2° . -
- y tan 1 ‘( 2-1 T T 4 (24)
clt ~ ¢ty 1) 2,
R a(t - &%) '
IZ(VII) i 3 = 2 Oleit - t') = B} ds'dt’
A [e“(t - t'")° - R]
t* z(e")
[ o
te-1 %k-1 v+ 2t - 2 - 202 - v2]

| where again z(t') = [c2(t - £1)2 = y211/2, ¢+ 2 ¢ = (1/0)
’ -(zi_l + y$)1/2 ana

& 2 _ i i
_lydci(t tz-l) Zpo1 Yy

art = Tyl %y

1
I,(VII) = <= |c(t - t,_,) tan

5 -
-l Vlc (£ = €, q)" = zi-l -y

Zx-1

- y tan (25)




Similarly,

9 e AC TSN

t z

| gy X

: ¢ Il(xx) = ?/: f dz'dt’

3 . 17’
| Beel "Zk-1 (2t - £)2 - 202 - ¢2)

=3 |-c(t - ) tan? ch

\Icz(t - t')2 - z'z - yz

+ z' log | c(t - ¢t') - cz(t - 1:')2 - z'z - yz

2 1te41
- == ] [ ]
+ y tan 1l c(t =) i
yvlcz(t e B y2
Z t, (26)
where
: Zx |Ss
' = -
£{z',t") * : f(zk,tz) f(zk-l't!.)
k=-1| "2-1 -

- f(zk'tz-l) + f(zk-l'tz-l)

o (t - t') dz'at’
b %f ./ 2 ;x : 2 _ 2.1/2
1 2%y (27 +y Me2(t - £')% = 2'¢ - v

- TrLe" c(t - t') tan! o35 F b I n———
: y‘lcz(t - 1:')2 - y2 - z'2
& z t
-y tan”? -  — k1% an
Vc (t - 1:')2 - y2 - 22 Zy.1 |tg-1
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where again

zk,.'tz
£(z',t") o flat) - Bl s itg)
Zp-11%-2
= Elae ) ¥ SR B s)

Finally we calculate, as promised, the self-terms

(K)s = 9_[ Ulec(t - t') - R] ds'dt’ (p=1, c=c_; p=3, c=c;) g
xp ij m 4 [c2(t ¥ t.)z = R2] o i | 3

where the reference point of zone A coincides with the apex of
the light cone. The calculation of the self-terms does not
depend on which side the line segment lies. Thus in figure 15

we have chosen side y = 0 and the above integral can be
rewritten as

cht v

dudv
(K..) = = = cAt
P ij "ff 2 _ 2,172

o %o u®)

where substitutions c(t - t') = v, 2' - z = u have been made.

In order to test the validity of the numerical solution
obtained via the integral equation method, we calculated V¥
at the middle of the front side of the rectangular slab as a
function of time and also Y on the top side of the slab as
a function of z at a particular instant and compared them to
solutions obtained with the finite difference method (FDM)
which was being studied simultaneously. The agreement was
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Figure 15. Geometry for the Calculation of Self-Terms
in the Integral Equation Method




excellent and the relevant graphs (figs. 20 and 21) are
presented in section V where the numerical results are
discussed. At that time we had decided that the FDM was
preferable for the calculations of interest (section VI offers
a comparison of the two methods) and we proceeded to evaluate
¥ at points on the surface of the slab using the FDM. As
additional debugging for the FDM we calculated Y for the
problem of diffraction by a 90° perfectly conducting wedge
and compared our results to the known exact solution. The
agreement was again excellent and this spurred our curiosity
to test the FDM for a wedge with a zero angle, i.e., a per-
fectly conducting half-plane. Once more the agreement was
excellent and it suggested the very interesting possibility
of tackling open surfaces with the FDM. In the next section :
we develop this method as applied to our two-dimensional : |
scattering from a dielectric rectangular slab.
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SECTION IV

FINITE DIFFERENCE METHOD

In order to épply a finite difference scheme to the
solution of our scattering problem we can either employ equa-
tions 2 and 3 for E.. Hy, H, (option 1) or one equation for
Ex = Y (option 2), namely equation 5. Option 1 allows us to
solve for all field components simultaneously whereas option 2
only produces Ex and Hy, Hz rust be obtained with the aid of
equations 2. However, there is a clear advantage of option 2
that prompted us to choose it: We know that for a perfectly
conducting wedge (P.C.W.) Hy and H, diverge at the edge whereas
Ex is zero. We want to use the P.C.W. for debugging and con-
sequently we should use E, alone which for our problem is also
finite at the edge. H_, and Hz may or may not diverge for a

b4
dielectric body but in any case debugging with the aid of the

 H
could introduce significant errors. We could try to pzovige
special treatment near the edges but option 2 makes this
unnecessary. In connection with the edge behavior one may
wonder whether V;zEx in equation 5 diverges. To answer this
we observe that this quantity is equal to (1/c2)(32Ex/3t2).
Ex is finite for all times and therefore so is azEx/atz--if
pathological functions are excluded. Thus V;ZEx is indeed
finite. Notice that as we cross the boundary, whether on the
sides or at the corners, V;zEx suffers a discontinuity since
¢ is discontinuous and aznx/atz is continuous (due to the
continuity of E, for all times). The continuity of czvg‘;zEx
will allow us, later on in this section, to determine the
proper finite difference scheme for this guantity as we cross

the boundary.

P.C.W. might not be reliable since the divergence of H

Next we proceed to apply the finite difference method to
equation 5 in a source-free region,




N

c2v2 y(p,t) = 22 ¥Y(p,t) v (5)
vz X ? [ ) p €

’
with appropriate boundary and initial conditions. V stands
for the two-dimensional region bounded by a contour Cp
(fig. 16) and it is divided by the contour C into an exterior
region Vb and an interior region Vi.” If V were a homogeneous
region then the solution of equation 5 could be uniquely
determined at a given time t and position p if the initial
values of ¥ and ¥ were known everywhere within V and Y on
Cb was known for all times up to t. To ensure uniqueness
of ¥(p,t) in our case, the continuity of ¥ and 3¥/9n across
the boundary C must be added to the boundary and initial
conditions above. One may wonder, however, what this condition
means when 3¥/30n is evaluated at an edge where it may diverge.
To answer this we recall the system of integral equation 11
and observe that because the singularity of 3¥/9n is integrable
we can remove the requirement of continuity of 3¥/dn at the
four corners (i.e., four isolated points). We still obtain
a unique solution for ¥(p,t).

Equation 5 is a hyperbolic equation and its solution via
the method of finite differences has been extensively studied
when V is homogeneous (see for example references 2 and 3).
The method is stable and converges to the exact solution

2. Forsythe, G. E. and W. R. Wasow, Finite-Difference Methods
for Partial Differential Equations, New York, John Wiley,
1960.

3. Fox, P., "The Solution of Hyperbolic Partial Differential
Equations by Difference Methods," Mathematical Methods for
Digital Computers, Edited by A. Ralston and H. S. Wilf,
New York, John Wiley, 1964. A
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when (ct/hy)2 + (ct/hz)2 < 1, where T is the temporal step

size and hy,hz are the grid step sizes in the y and z directions
respectively. For our scattering problem the finite difference
method is still applicable provided the appropriate stability
and convergence criteria and boundary and initial conditions

are satisfied. 1In each region the stability and convergence

S 2 2 2
criteria are: (coro/hoy) + (coro/hoz) < 1 and (citi/hiy)

+ (ciri/hiz)z < 1 outside and inside the rectangle respectively.
It is desirable to choose Ty = T, and hiy = hoy' hi22= h,. in
which case both criteria are satisfied if-(coro/hoy) +
(coro/hoz)2 < 1 since C; < G4+ The boundary and initial
conditions are those we mentioned earlier in connection with

the uniqueness of the solution of equation 5. (To verify the
accuracy of the values at the interface C we compared the

fields calculated via the finite difference approach and the
integral equation method and the excellent agreement we obtained
strongly indicated that the values were indeed accurate.) In
the present case the incident plane wave pulse has a smooth
wavefront and is assumed to hit the front side of the rectangle
at t = 0. Thus ¥ and @ at t = 0 are known everywhere within V.
Since derivatives are replaced by finite differences we write
&(g:ol = [¥(p,0) - ¥(p,=1)]1/1 and the initial conditions are
then translated into the statement "y at t = 0,-t is known
everywhere within V." As we shall see later the finite
difference method makes explicit use of this statement. The
importance of the boundary condition will become evident as

we transform equation 5 into a system of difference equations.
In order to accomplish this we first replace region V by an
orthogonal grid with grid sizes hy and hz as shown in figure 17.
Notice that both Cy, and C coincide with grid bars and the points
at which Y will be evaluated coincide with the intersections

of the grid bars. Next we introduce a temporal step size

equal to T and replace vjzv = (2%v/3y2) + (3%¢/32%) ana




Figure 17. The Grid Used in the Finite Difference Method.
The Boundaries Coincide with Grid Bars and the
Observation Points with the Intersections of
the Grid Bars

53

A A et Ao

A




32W/3t2 by their appropriate differences in a region of
homogeneity,

2
;ig-w(g,t) = [¥(y + h,z,t) + ¥(y - hy,2,t)

RS —

2
2‘l'(y,z.t)l/hy + °‘hy)

2r¥(p,t) = [¥(y,2 + hy,t) + ¥(y,z - h_,t)

2¢(y,z,t)1/h2 + o(h,)

u“l
ot |o .
€
—~
o

-

o
N
[}

2‘l'(y.2.t)]/'r2 + 0(1). (28)

Equations 28 would be exact if ¥(p,t) were a quadratic function
of y, z, and t. In our subsequent calculations we set h_ = hz
= h because the back side of the rectangle (z = ~b) will be
taken sufficiently far from the front side (z = 0) so it will
have no effect on our field calculations for the time periods
of interest. (Thus we define h by dividing the front side

into equal-sized segments and the top side is set equal to

an integer multiple of h.) The next two steps involve the
boundary conditions across C and specifying ¥ on Ch- The
boundary conditions across C require continuity of ¥ and

aY/3n. As we observed earlier in this section czvzz? is also
continuous. These three conditions will alow us to replace
czvgzv by a difference scheme for points on the sides of the ;
rectangle. We begin with point p on side y = 0 and for con-
venience we choose a coordinate system yz with origin at p and
set t = 0. (This choice for t has nothing to do with previous
considerations and it is only a matter of convenience. Our

results will be valid for any t.) We will assume as we did

N
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for the derivation of equations 28 that Y can be expanded in
a Maclaurin series about z = 0, y = 0.

Vo = a + by + éz + dy2 + e22 + fyz + 0(h3) y >0

2 2

+ f'yz + 0(h3) y <0
(29)

?i = a' + b'y +c'z + d'y° + e'z

¥ and 3¥/9n = 3¥/3y are continuous as we cross y = 0, i.e.,
a=a',b=Db',e=¢e', c=¢c', £f=£f'., To determine the
relationship between 4 and @' we recall that czv2 ¥ is also

Yz
continuous as we cross y = 0, i.e.,

2,2 2 262 2
covyzvo = (2d + 2e)co = civyzwi = ci(2d' + 2e')
and
2
)
. d' = (d + e) - = e. (30)
“5
In order to determine the difference expression for czvyz?
at y =2 =ct = 0 we set
c%v v = L [A¥(h,0,0) + BY(~h,0,0) + C¥(0,0,0)]
yz ;‘2’ (AN (AN AN}
+ hl—z [DY(0,h,0) + E¥(0,-h,0) + F¥(0,0,0)]
=2(d + e) cg. (31)

Using equations 29, equation 31 gives
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e

A(a + bh + dn?) + Bla - bh + [}a + e)
4

e}hz + Ca

Wndo™n
'

+ D(a + ch + eh?) + E(a - ch + eh?)
+ Fa=2(d + e) cghz. (32)

Setting the coefficients of a, b, ¢, 4 and e in equations 32
equal to zero we obtain '

A+B+C+D+E+F=0

(A -Bh =0

(D-E)h =20

| °§ 2\. 2
A+B-—2--2coh 0
Ci

2
c S
D+E+ B[-2 - - 2c§ n? = 0
Ci

ol

- S ——




2,2

2,2
Thus the difference formula for covy 20 = civyzwi on the
boundaries of the rectangle is
S
2.2 . . .2 .. 200
CoVyz¥o = €1y ¥ = —-——;5 ¥Y(y + h,z,t) + ¥(y - h,2,t)
1+ —
c
i
1
| +¥(y,z +Rt) + ¥z - ht) -avly,z,e) A2 (30)

where y,z is some point on the boundary C. Notice that our
boundary includes the four corners and the question arises
as to what the difference formula for c2 &

Vyzw is at a corner.
The answer is that since czvizv is continuous we can choose

an exterior point that is arbitrarily close to the corner

and use the first two of equations 28 with ¢ = Coe

We are now in a position to replace equation 5 by a system
of difference equations and examine: the boundary conditions
for Y on the outer boundary Cp. For a point away from the
boundaries equation 5 assumes the form

(2 (v,2)t2/m2) ¥(y + h,z,t) + ¥(y - h,z,t) + ¥(y,z + h,t)
+ ¥Y(y,z - h,t) - 4¥(y,z,t)] = ¥(y,z,t + 1)

+ ¥Y(y,z,t - 1) - 2¥(y,2,t) (35)

where points (yth,z), (y,z2%th) lie in the same medium as
Y.2z. Notice that equation 35 allows the determination of ¥
at p,t + T in terms of the value of ¥ at p .and neighboring
points at earlier times. For a point on the boundary C
equation 34 combined with the third of equation 28 replaces
equation 5. Let us see how we can evaluate Y at a given
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point and time. For simplicity let us assume that the front
side of the rectangle extends to infinity, i.e., coincides
with the z = 0 plane. This makes Y independent of y and the
problem becomes!bne-dimensional (3/3y = 0). We define our
regién of interest by drawing two boundary walls z = z, > 0,

z =12z, < 0 and sgecifying ¥ on them. Thus we set Y(zl,to) = 0
and W(zz,to) =Y nc(zz,to). Obviously these conditions

cannot be valid for any to since the reflected and transmitted
waves will eventually reach the walls z = z, and z = zy
respectively. Let us now select a point z < 0 and employ
equation 35

(cg'rz/hz)[‘l'(z +ht=-1) +9¥%2z-=-h,t-1) - 2¥(z,t-1)]

= Y(z,t) + ¥Y(z,t - 21) - 2¥(z,t - 1) (36)

We observe that Y(z,t) depends on the value of Y at neighboring
points at times less then t. ¥ at a neighboring point at

t = T can be similarly evaluated by writing equations analogous
to 36 and it too depends on the values of Y at neighboring
points at earlier times. This procedure shows that ¥(z,t)
depends on ¥(z,,t = ny7) and ¥(z;,t - n,7) where Iz2 -z| =

nzh and zy -~z = nlh. Thus if the walls have not been reached
by the scattered waves at t - n,t (for z = z,) and £t - n, T

(for z = zl), the boundary conditions are valid and so is the
calculation of ¥ at z and t. Equation 36 shows that ¥(z,t)

not only depends on the value of Y at neighboring points at

t - Tt but also on the value at ¥ at z at t - Tt and t - 27T,
i.e., a knowledge of these values is required which in turn
depend on the value of Y at earlier times. This continues
until we reach the initial conditions. Thus the difference
scheme works as follows. First we write equations 36 and

34at t =1

S
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(cirz/hznV(zl,O) + ¥(z; - 2h,0) - 2¥(z; - h,0)] = ¥(z; - h,7)

+,‘l’(z1 = h,»1) - 2‘!’(2l = h,0) z=2 ~-h

1

(2t2/m?)(¥(z + h,0) + ¥(z - h,0) - 2¥(2,0)] = ¥(z,1)

+ ¥Y(z,-1t) - 2¥(z,0) z>0
2c§r2
-3 } 2 [‘P(hlo) + ‘{’(-h,O) - 2¥(0,0)] = ¥(0,T)
h“(1 + Co/ci)
+ Y(0,-1) - 2¥(0,0) z =0

(cgrz/hznV(z + h,0) + ¥(z - h,0) - 2¥(z,0)] = ¥(z,T1)
+ ¥Y(z,-t) - 2¥(z,0) z2 <0

(cgrzlhz)[?(zz + 2h,0) + ¥(2,,0) = 2¥(z, + h,00] = ¥(z, + h,7)

+ ‘l'(z2 + h,=-t) - 2?(22 + h,0) z =2z, + h (37)

where z = z, > 0 and z = z, < 0 arznzhe two boundary walls
such that V(zl,t) = 0, V(zz,t) =Y (zzt). Notice that
equations 37 show that ¥(z,t), for any z (except at the
boundaries), depends on ¥(z ¢t h,0), ¥(z,0) and ¥(z,-1), i.e.,
on the initial values (t = 0,-t) of ¥ everywhere within V.
These values are known as we explained earlier, i.e., equa-
tions 37 allow the calculation of ¥(z,t1) everywhere. At
this point tha boundary conditions are superseded by the
initial conditions but they will manifest themselves in the
next step which involves a set of equations similar to

equations 37 written at t = 2t rather than t = 1. This




new set allows the calculation of ¥(z,2t) in terms of

¥(z £ h,t), ¥Y(z,T) that were calculated in the first step
: and ¥Y(z,0) that,is known through the initial condition.
v ; Notice that the first and last of equations 37 written at
t = 2t involve W(zl,t) and W(zz,t) respectively, i.e., the
values of ¥ at the boundaries. These values were not cal-
culated in the first step; they have to be specified. It
is clear now that we can march on in time in steps of t and

calculate Y (tmh,nt) for any m and n provided the boundary
conditions are not violated.

The simple one-dimensional scattering problem above, well
illustrates the mechanics of the difference equation method.

Our two-dimensional scattering problem can be solved similarly

subject to appropriate initial and boundary conditions.

The initial conditions still require knowledge of ¥(y,z,0)
and ¥(y,z,-t) everywhere and the boundary conditions now
involve four walls instead of two, i.e., y = Yy:Ys in
addition to z = Z,+2,. The boundary gonditions at z = z,,2,
are still ?(zl,t) = 0 and W(zz,t) =Y nc(zl,t). In the y
direction the symmetry about the y = - 0 plane, where b 9
is the y coordinate of the middle of the front side, allowed
us to impose the condition W(ym - h,z,t) = \l’(ym + h,z,t),
where y = ¥a = h is the boundary wall, and it works as follows.
The difference equation at ym,z,t is

Y[?(ym + h,z,t - 1) + ?(ym - h,z,t - 1) - ZW(ym,z,t - 1)]

= ¥Y(yp,2,t) + ¥(yp,2z,t = 27) = 2¥(yp,2,t - T)

where y depends on z. Because of the boundary condition
?(ym + h,z,t = 1) = ¥Y(Y, - h.z,t - 1), ?(ym,z,t) can be
calculated in terms of the value of Y evaluated at earlier
times. For example, Y(ym,z,ZT) is calculated in terms of
?(ym,z,r) and Y(ym + h,z,1t) which were evaluated in the
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first (t = t) step and ¥(y,,Z,0) which is known through

the initial condition. Notice that the above boundary
condition is true for all times in contradistinction to the
boundary conditions at z = Zy:25. Finally, the second
boundary condition in the y direction is imposed by assuming
that Y(y, + h,z,t) = Y(yé - h,z,t) where y = y, + h is the
second boundary wall in the y direction and yp (as well as
zy and zz) depends on the period of time over which we wish
to know Y. This condition means that our scattering configur-
ation is periodic in the y direction which of course is not
true. It is just a convenient condition and it will be
violated when the scattered wave reaches the wall. Again
the calculation of ¥ at y,z,t will depend on the value of V¥

at the boundary at t - nh where yp - { = (n - 1)h. The
violation of conditions ?(y,zz,t) = ¥ nc(y,zz,t) and
Y(yp+-h,z,t) = ‘l’(yp - h,z,t) will not be readily noticed
because the scattered field has a smooth wavefront that
builds up slowly and at the time £ the violation the
incident field may have a high vaiue. However, the violation
of condition Y(y,zl,t) = 0 corresponding to a perfectly con-
ducting wall at z = z, will be quickly felt in its vicinity.
We can easily keep track of these violations in the computer
printout and discard erroneous results.

As we explained at the end of section III we debugged the
finite difference method by (a) testing surface field calcula-
tions, for scattering by a dielectric rectangular slab,
obtained via this method against analogous calculations
obtained via the integral equation method and (b) by
comparing field calculations off the surface of a 90°
perfectly conducting wedge and a perfectly conducting half-
plane, both illuminated by a plane electromaguetic pulse,
with the known exact solutions. 1In all instances the agree-
ment was excellent. The relevant graphs are given in the
next section where all the numerical results are presented.
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Finally, we mention that the boundary condition given by
equation 34 was not critical in applying the finite difference
scheme to our problem. That is, by shifting the grid a little
so that a grid bar was just in front of the interface and by
applying the difference scheme given by equation 28 we
obtained results of comparable accuracy to those obtained
with the application of boundary condition 34. The only
difference was that the interface could not be located to
within a grid step size but this uncertainty can be reduced

by making the step size smaller.
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SECTION V

NUMERICAL RESULTS

In this sectién we present our numerical results in the
, form of graphs for field calculations on and off the surface
of a réctangﬁlar dielectric slab illuminated byrplane wave
electromagnetic pulses with smooth wavefronts (fig. 4). We
also present graphs, used for debugging, that show the
excellent agreement between calculations obtained via the
finite difference method and exact solutions for diffraction
by 0° and 90° perfectly conducting wedges. Finally, we
determine the time interval over which our slab results are
applicable to the ATLAS I trestle platform problem.

In order to apply the finite difference method to diffrac-
tion by a perfectly conducting wedge we employed the scheme
developed in the previous section and set Gy 0, i.e.,
ei/eo = », This is tantamount to setting ¥ = 0 for all times
on the surface of the wedge. In order to test our numerical
results we employed the known exact solutions for illumination
by a plane wave step pulse and appropriately convolved these

solutions with an incident pulse of our choice, i.e.,

inc inc 1600 2 2
E =V = _Ez— (cot) (cot - B) U(cot) U(B - cot).
(38)

This pulse starts at t = 0 and terminates at t = B/co with a
maximum of 100 (arbitrary units) at t = B/Zco. It has a
smooth wavefront with avinc/at =0 at t = 0. A plot of the
incident pulse is given in figure 19 with 8 = 2.2 (arbitrary
units). Figures 18 and 19 exhibit the excellent agreement
between the numerical results and the exact solutions. The
spatial and temporal step sizes we used were h = 0.05, Bt -
0.025, both in the same arbitrary units as 8. Notice that
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the observation point (0.1,0.1) is only two spatial step
sizes (in both the y and z directions) away from the edge
but the agreement is still excellent.

The next two'graphs present a comparison between the
integral equation method and the finite difference method.
In figure 20 we plotted the total electric field at the
middle of the front side of the slab versus cot/d where 4 is
the thickness of the slab. The incident field is still given
by equation 38 with B = 2d and the slab has a dielectric
constant ei/e° =4, i.e., ¢, = co/2. For the integral equation
method we chose As = 4/8 and coAt = h/2 and for the finite
difference method we chose h = 4/21 and ggT = h/2. We wanted
to make the finite difference method as accurate as possible
in order to compare it to the integral equation method and
this is why we chose a finer spatial division for the former
than the latter method. Figure 21 shows a comparison between
the two methods for the total field evaluated on the top side
(y = 0) of the slab versus z/d at an instant such that the
. incident wavefront has just arrived at z = 4d. The incident
field is also plotted and occupies a length of two slab
thicknesses since B = 2d. (For this case we chose h = 2c01 =
d/21 and As = 2coAt = d/6.) The agreement between the integral
equation method and the finite difference scheme is excellent
and this served as debugging for both approaches.

The subsequent graphs present field calculations via the
finite difference method at points off the surface of the
slab. It was determined that for these calculations the finite
difference method was superior to the integral equation method
because of a lesser use of computational resources (see sec-
tion VI). The incident field was chosen as a fast rising
and slowly decaying pulse in order to emulate the electromag-
netic pulse arising from an exoatmospheric nuclear detonation.
Such a pulse is appropriate for studying the effect of the
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ATLAS I simulator trestle platform on the incident electromagnetic
pulse. We will discuss the applicability of our results to the
ATLAS I trestle platform problem later on in this section. The
incident pulse is'éiven by

2

This pulse has a smooth wavefront (all derivatives vanish at t = ()
and it reaches a maximum of 101.422 (arbitrary units) at cot = 9d.
However, at cot = 3d the pulse has only risen to 0.017. For this
reason we arbitrarily set t = 0 when the field strength at z = 0
is 0.017. Thus the effective rise time is 6d/c°, i.e., from 0.017
to peak. If we adopt the definitions given in references 4 and 5

then for our pulse t_ . .. . % Wigg/(dwinc/dt)max ¥ 3.03 d/c and

t10-90 = 10% to 90% rise time ) 2.98 d/c,. The reason we chose
equation 39 for our incident pulse is that the usual double expon-
ential employed by other workers to represent the true EMP has a
..discontinuous first derivative at t = 0. (Notice that we could
also have employed the inverse double exponential waveform

¥1PC « y_[(exp(-a(t-t ) + exp(B(t-t_ )) 1"} (refs. 4 and 5) for which
all derivatives at t = 0 exist. A suitable choice for t, should
make vinc at t = 0 as small as desired.) :

We have plotted the total electric field at points above the
slab versus the distance from the origin, with the vertical
distance from the top of the slab and the dielectric permittivity
as parameters. It is assumed that the effective wavefront (i.e.,
a field strength of 0.017) hits the edge at t = 0. In figure 22
the graph for z = 5d starts at co,t/d = 6 and at this instant the

4. Baum, C. E., Some Considerations Concerning Analytic EMP ;f
Criteria Waveforms, Theoretical Note 285, Air Force Weapons i

Laboratory, October 1976.

5. Castillo, J. P., K. C. Chenand and C. E. Baum, Relation of Rise
Time Definitions for Various Waveforms, Atlas Memo 20, Air
Force Weapons Laboratory, November 1976.
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incident field has a value of 2.6, i.e., the effective wavefront
has already passed the point z = 5d for a length of time At = d/co.
Graphs at points further away from the edge also show the actual
times correspondiﬂg to the incident wave sweeping by. Thus at

z = 15d we start at t = 16d/co and at z = 25d at t = 26d/c°. To
obtain the results displayed on the graph through z = 25d we
pushed the memory requirements under CDC 7600 FIN4 to the limit
and therefore we were forced to use a relatively coarse grid size,
h = d/7. Thus we cannot guarantee the accuracy of the results.
However, results for h = d/21 (at z = 5d) and h = d/11 (at z = 15d)
were similar to those at h = d/7 over the common region in space
and time, the maximum deviation being 1 to 2 percent of the peak
incident field.

The plots show that the presence of the slab can distort the
incident field significantly. On the top surface of the slab or
very close to it, the total field reaches a maximum that is
shifted in time relative to the maximum of the incident field.
This maximum is also larger than the peak value of the incident
field. The behavior of the total field can be qualitatively
understood if we take into account the secondary wave within the
slab propagating with a speed ¢ = ¢y - The larger the dielectric
permittivity the slower the secondary wave is (i.e., smaller'ci)
and the total field reaches its peak later. This can be seen from
the graphs for € = 4e, and ¢; = 8¢,. As the observation point
moves upward the total field tends to exhibit two humps until it
is sufficiently high where, due to the diminishing influence of
the slab, resembles the incident field. As the observation point
rescinds from the edge the presence of the slab becomes more
pronounced and one must reach progressively higher observation
points (larger y/d) before the influence of the slab has diminished.
Thus at z = 5d, y = 6.5d (ei = 8e°) the field exhibits, in some
approximate manner, the same distortion as the field at z = 25d,

y = 16.5d (g4 = Seo).
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1. THE ATLAS I TRESTLE PLATFORM

Our two-dimensional scattering from a rectangular dielectric
slab can serve as g.model for studying the influence of the wood
support structure (trestle), of the ATLAS I simulator, on the
waveform of the simulated EMP. We will only focus our attention
on the platform, i.e., ignore the rest of the support structure.
(See references 6 and 7 for a study of the reflection of a plane
wave from the rest of the support structure.) This platform is
depicted in figure 28. First notice that the effective rise time
of the incident pulse given by equation 39 is 6d and since the
platform thickness is approximately 2 feet this effective rise

time is translated into 12 nsec. Whereas t and t,,_g, are

max rise
approximately equal to 6 nsec. Thus our pulse is faster rising
(also faster decaying) than the actual pulse to be fired in the
ATLAS I simulator (see ref. 8 for the waveforms obtained in the
pulser test fixture (PTF) with the ATLAS prototype pulser module
and ref. 9 for a summary of the final results of all testing
performed on the ATLAS prototype pulser module in PTF and also the
influence of additional diffraction and relfection effects on the
waveform of the pulse.) This difference in the rise time and other
pulse characteristics between our pulse and the one to be fired

into the working volume of ATLAS I makes our quantitative results

6. Prather, W. D., The Reflection of Electromagnetic Waves from
an Array of Electrically Small Metal Bolts and Rings, ATLAS
Memo 15, Air Force Weapons Laboratory, September 1974.

7. Prather, W. D., Lt. J. Little, Maj. R. Blackburn and K. Chen,
The Reflection of Electromagnetic Waves from a Wooden Test Stand,
ATLAS Memo 16, Air Force Weapons Laboratory, November 1974.

8. Maxwell Laboratories, Inc., TRESTLE Prototype Pulser Test Report,
Volumes I and II, Report MLR-483, November 1975.
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Figure 28. Geometry of the ATLAS I Trestle Platform
for the Calculation of "Clear" Time Interval
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not directly applicable; our results, however, can still provide
information on the influence of the platform on the waveform of a
fast rising and slowly decaying pulse. Next we observe that our
two-dimensional stﬁdy is valid as long as it is applied to observa-
tion points that have not been reached by the diffracted waves due
to the edges P', P". Choosing our observation points on the x = 0
plane the maximum or clear time interval over which our two- -
dimensional model is valid is the time that elapses from the instant
the incident field reaches the observation point P until the instant
the diffracted fields from edges P', P'" reach P (fig. 28), i.e.,

1/2 1/2
conax/d = [(az + zlz, + y%) - (zg + ylz,) ]/d

For the trestle platform a#f70', d & 2'. Thus

conax/d zP/d Zgii
30 5 5 S
28 5 6.5
23 15 0.5
21 15 10.5
18 25 0.5
16 25 16.5

Thus, assuming that gy = beg for the wood platform, cot/d in
figure 22 extends throughout the indicated region, in figure 24
approximately throughout the indicated region and in figure 26 up
to an average of 26 + 17 = 43. 1In any case the graphs show che
distortion of the incident waveform due to the presence of the
platform, over a large portion of the incident pulse, well past
its rise time.

PP P T e e

9. Baum, C. E., D. E. Higgins and D. V. Giri, Pulser Test Results
and Preliminary Estimation of Transient Electric Field Waveforms
in ATLAS I, ATLAS Memo 18, Air Force Weapons Laboratory, Oct. 1976.
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SECTION VI

COMPARISON OF THE INTEGRAL EQUATION AND FINITE
DIFFERENCE METHODS

'

In this section a comparison is drawn between the integral
equation method and the finite difference scheme based on the
required computational resources and degree of overall sim-
plicity.

1. MEMORY REQUIREMENTS
a. Finite Difference Scheme

In order to ensure that the imposed boundary conditions
discussed in section IV do not affect the accuracy of the
field strengths computed in the region outside the dielectric
body, it is necessary that the grid extend a distance coT in

the positive and negative z-directions and in the distance above

the platform, where T is the length of the time from when the
incident field first hit the body until the latest time of
interest. (Due to symmetry about the plane y = N 0,

where Tos is the y coordinate of the middle of the front

side, only the y > p % region need be considered.) If the
only fields of interest are those on or inside the body, the
grid need only be extended to a distance coT/Z instead of coT.
(This can be understood by recalling the influence of the
boundary conditions discussed in section IV.) Thus the grid
size must be 2¢,T(c, T + d/2)/h2 in the former case and
coT(coT/z +d/2)/h2 in the latter case where h is the grid
step size. The finite difference algorithm requires knowledge
of the fields at the present time step and the previous time
step in order to compute the fields at the next time step.
However, the field strength at a given grid point at the
previous time step is only needed to compute the value at

the next time step at the same grid point and consequently

it iAs only necessary to provide two storage locations for
sach grid point. J




b. Integral Equation Method

The integral equation method permits a tradeoff in costs.
Instead of recomputing the influence coefficients, discussed
in section III,’for each time step, it is possible to store
them for future use and compute only those coefficients
relating the present time step to the first time step. We
can do this because the kernel of the integrals defining the
influence coefficients depends on t - t' and not t or t'
individually. Thus there is a tradeoff in that presumably
memory references are faster than evaluation of transcendental
functions (resulting from the explicit calculation of the
double integrals defining the influence coefficients) and
the logic required to determine whether or not a zone can
influence the reference point. Under the assumption that
this tradeoff of memory for computer time will be used,
4N2(T/At) memory location are required to store the influence
coefficients where N is the number of line segments and At
is the time step size. This number of memory locations can
be reduced by implementing existing symmetry relations (e.g.,
interaction of neighboring line segments is independent of
location provided that the segments lie on the same side)
but the basic dependence remains unchanged. It should be
noted here that, for the angle of incidence of the incident
field we are considering in this report, if the length of
the top and bottom sides of the rectangle is greater than
coT, N can be reduced to ignore the region of the rectangle
that will not be illuminated by the incident field by time
COT. Thus for such cases the number of memory locations for
the influence coefficients depends on three additive terms
proportional to T, '1‘2 and T3 respectively, and if the front
side is much smaller than coT, T3 dominates. 1In addition
the integral equation method requires knowledge of ¥ and ¢
for all previous times, i.e., 2N(T/At) memory locations
whether or not the influence coefficients are stored.




2. COMPUTATION TIME
a. Finite Difference Scheme

Ignoring the boundary points which require special
treatment each grid point requires the same length of time
at each step. From the form of the difference scheme which
replaces the differential equation at each grid point we
can see that three multiplications, six additions and eight
array references are needed for the calculation of the field
strength at given grid point at the next time step. These
operations must be performed for each grid point for each
time step, i.e., coTz(coT + d/2)Ti/h2 overall computation
time is required over the time of interest T, where Ti is
the time length of the operations indicated above. 1If
coT >> d/2 the time required is proportional to T3. This
result may be reduced by factor of three by recognizing
that in calculating the field strength at a grid point at
t the finite difference technigue need not be applied to
points at a distance greater than cot from the body because
the scattered field has only traveled a distance cot and
the field strength at grid points outside this region is
that of the incident field. If the total period of interest
is T then the computation time is approximately cg'r3'r*/3h2
ig e T >» d/2. (The factor of three comes from éT tzdt =
T /3.)

b. Integral Equation Method

As we explained in our discussion of the computation
time for the finite difference scheme each grid point requires
the same length of time at each time step independently of
the parameters of the system, i.e., length of time the body
has been exposed to the incident field, size of body and
step size. Unlike the finite difference scheme the central
processor time for the integral equation method depends on
all those parameters. Assuming now that the influence

82

BN



’Fl-llIlUlIllllIIIlllllllu!uu!Iun-u--nuuunmmu---u —

coefficients have already been calculated and stored the
calculation of the fields at time t requires approximately
4N2(t/At) multiplcations and additions. Thus to extend the
calculation to fime T requires 2N2(T/At)2 multiplications
and additions, and if T5 is the time of one multiplication
Plus one addition the computation time is 2N2(T/At)2T5.

The calculation of the influence coefficients requires the
calculation of 4N2(T/At) double integrals. Even though for
our geometry these integrals can be done analytically, the
necessary evaluation of the resulting transcendental functions
will contribute a significant amount to 2N2(T/At)2T§ unless
T/At is large. It should be noted that the above discussion
assumed that only the surface fields were of interest. For
points off the surface of the body the calculation of ¥ a:

a given time t requires 2N(t - R/c)/At additional memory
locations for the influence coefficients and 2N(t - R/c)/At
additional multiplications and additions where R the average
distance of the reference points on the surface of the body
to the observation point off the surface. (If Y at the

same point is desired for a series of equally spaced time
steps, the required number of integral evaluations will
depend only on the greatest time of interest, not on

the number of values wanted.) |

3. CONCLUSIONS

As we mentioned in the beginning of this section the
comparison between the two methods will be based on the
degree of overall simplicity and the required computational
resources. With respect to deriving the necessary equations
and casting them into a form suitable for numerical calcula-
tion the finite difference scheme is much simpler than the
integral equation method and this simplicity is definitely
a great advantage. Both methods can be made comparable
in accuracy but the required computational resources for
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the two methods depend differently on the length of time

of interest and this factor influences the regions over
which one method can be superior to the other. To
understand this’/point recall that the finite difference

' method requlres approximately 4c oT /h memory locations

' and c2 3 l/3h compuatation time whereas the integral
equatxon method requires approximately 4N (T/4t) (or

T /(At) if the incident wave has illuminated a length

c T of the body and c ot 2P d/2) memory locations and

2N (T/At) T2 computation time. Thus assuming that 2c_At N h
we understand that when T/At < N2 the finite difference
scheme is preferable. However, for large times, i.e.,

T/At > N2 the integral equation method requires fewer
computational resources and should be considered if the
simplicity of the difference equation scheme is overridden
by an appreciably smaller cost for the integral equation
method. If the field strength must be calculated at points
far away from the body, the integral equation method is more
practical since the finite difference scheme requires propa-
gating the field from the body to the region of interest
whereas for the integral equation method the distance from
the body has no effect on the required resources.

Our conclusions about computer resources were based on
the two-dimensional model of the wave equation. For a
three~-dimensional model the finite difference method would
again be relatively insensitive to the dimensions of the
body. Memory requirements would vary as T3 hence total
time will vary as T‘. For the integral equation method
it is no longer necessary to store influence coefficients
and field strengths for all time but only for r /ciAt time
steps where T is the maximum diamoter of the body. The
number of patches will vary as L /h where L and h are
characteristic dimensions of the body and spatial step size,
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hence the matrix of influence coefficients requires of

the order of (Lz/hz)z(rm/ciAt) memory locations. Similarly
the number of field strengths required is (Lz/hz)(rm/ciAt).
The time per patch per step varies as (Lz/hz)(rm/ciAt) hence
total time varies as (L2/h2)(rm/ciAt)T. From the above
brief discussion we understand that we can draw similar
conclusions about the relative merits of the two methods

as for the two-dimensional comparison.




APPENDIX A
REFLECTION FROM A DIELECTRIC HALF SPACE
-
We assume that the incident electric field has the form

E = ?lnc a where yinc _ f(t - yl/c ) = £t - l/c (y sin a -
2 cos a)l (fig. Al). Thus at the boundary surface (z = 0)

inc = f(t - y/co sin a). It is reasonable to assume that

the total surface field Y and 3¥/9n' will only depend on

t - y/co sin a, i.e., as the incident surface field propagates
to the right the total surface field keeps pace with it. By
noting that (p' - p) n = (y' - y)ay . éz = 0, equations 17 can
be written as follows

: c 2 ule (e -t - |y
%—‘!’(o,t) - Yy L 2% f f [° - 1;7 gz dy'dt’
£

1 Sal ) i‘t't"'y'] 5 AT
3 Y(o,t) = Tf f 2 ” 1/Z dy'dt
=0 i(t- t) ' ]

inc

(A-1)

Invoking causality we understand that the upper limit of the
t' integration can be replaced by t. (The lower limit is of
no interest for the calculation in this appendix.) Setting
U =1 we obtain y' = ftc(t - t') as the limits of the y' inte-
gration.

Next we set t - t' = 1 and the limits of the T and y'
integrations are (o,») and (-ct,ct) respectively. Recalling
that 3¥/on only depends on t' - (y'/co) sin a we make the
following orthogonal transformation
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Figure Al. Geometry Depicting the Oblique Incidence of an Electromagnetic
Pulse onto an Infinite Dielectric Half Space
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(]
u=7T+ < sin a
o

#® v = -1 8in a + X . (A-2)
€o

Thus 3¥/3n is a function of t' -(y'/c,) sina =t - 1 - (y'(co)
sin a, i.e., a function of t - u which is independent of v
since t is just a constant. This will allow us to do the
v-integration explicitly. Noting that dudv = 1/c°(1 + sin? a)
dtdy' and referring to figure A2 we can rewrite equations A-1l

T e ¥ Y T N 1 . o . M T Y 21 0 AW B £ A oV W L i NS . S T T ey

sonogem

as
. o Liu
1 nc 1 vy dv
¥Y(o,t) = ¥ (o,t) - f du
it gl e [ (a,v2 + Byv + ;)77
o LT 1 1 1l
o Lau i
1 Y v
¥Y(o,t) = f duf (A-3)
] %) @ (agv? + Byv + c2)177
o Lou
2
* 1% sin a
where L, = Sy 5 =
£E w wlad sin a el Si
2 Y sinrasEil Y o
Al = -cos2 o Az = 72 sinz a -1
B1 = -4 gin o B2 = =-2(1 + 72) 8in a
c1 = cos2 a C, = yz -‘sin2 a.
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If we perform the v-integration we obtain

s T inc 1
x ¥(o,t) = ¥ (o,t) - Yoo ¢ I

1

* (1 - 72 sin2 aSI:! :

3 ¥lo,t) =
o
where I = f = au.
o
Solving Equation A-4 for Y(o,t) we obtain

¥Y(o,t) i 2y cos a
LnC SR, SR B T
y(o,t) Y cos a + (1 Y sin a)

(A-4)

c

I [ -é' (A-5)

c
o

i.e., the well-known result for the transmission coefficient.
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APPENDIX B

REFLECTION FROM A DIELECTRIC SLAB

To simplify,our calculation we will assume broadside
incidence, i.e., EC = ¥17® & = £(t + z/c )8, (fig. Bl).
In appendix A the 3¥/3t term in equations 17 was not considered
because (p' - p) - n' = 0 for the surface of an infinite half
space. In the present case p' and p can belong to different
surfaces and (p' - p) * n' is not necessarily zero. Thus in
this appendix we will check the validity of equations 17 when
both 3¥/3t and 3¥/3n are retained whereas in appendix A only
3¥/9n was retained.

Due to the broadside incidence ¥, 9¥/3t and 3¥/9n are
independent of y. Thus the y'-integration can be performed
explicitly by setting U = 1 and determining the limits of the
t',y' integrations and equations 17 reduce to

M £ A D Y WA A T . G Y A

t t=-d/c !
%‘{'(t,zﬂ)) = y30C (¢, 2=0) - 529 % at' - ;‘-/ ° ay at’ g
on n i
e z=0 i z=-d i
1y a |
t o= )
2 ’ g & on A on at?
- -0 z==d

z=0

+ % ¥(t - d/cy, z = -d)
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Figure Bl. Normal Incidence of an Electromagnetic Pulse Onto

an Infinite Dielectric Slab of Thickness d
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& t-d/co & t
%-\P(t,z=—d) - WABC e oo ay - —29/ = et - 2 g% at’
¢ = z=0 o 2=-d
1
1 R Y e Y :
3 Y(t,z==-d) = Tf Y dt' + E i n dt
T z=0 s z=-d
+ % ¥(t - d/c;, z = 0) (B-1)
Next we set
£
A(t) = ¥(z = o,t), B(t) = / 2¥/n| __, at'
(o]
: t
C(t) = ¥(z = -d,t), D(t) = .lr 3¥/3n|,__4 dt’

o

and equations B-1 can be rewritten as

A(t) = 2£(t) - ¢ B(t) - ¢ D(t - d/c) - C(t - d/c))

A(t) = ¢;B(t) + ¢ D(t - d/ci) + C(t - d/ci)

C(t) = 2£(t - d/co) - con(t - d/co) - cOD(t) - A(t - d/co)
C(t) = cyB(t = d/cy) + ¢;D(t) + A(t - d/cy) (B-2)
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In order to solve Equations B-2 we transform them into the
frequency domain: '

; ikod ikod
A(w) + B(w) +/C(w) e - D(w) e = 2f (w)
ikid ikid

A(w) - ciB(u) - C(w) e + ciD(m) e = 0

ikod ik 4 ikod
Alw) e + cBlw) e ° +c) - c D(w) = 2f(w) e

ikid ikid
-A(w) e - ciB(m) e + C(w) + ciD(w) = 0 (B-3)

Solving Equations B-3 for A(w) we obtain the well-known
result for the reflection coefficient R(w)

2 :
(1. - y") & .8in a
2y cos a - i(1 + YE) sin a

R(w) = A(w) - £f(w) =

where y = ci/c° = ko/ki'




